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ABSTRACT

Independent Modal Space Control (IMSC) is a technique that is often used for
the control of large order structural systems. The pertinent optimization
problem in the simultaneous design and control of structures is a min - min
problem that minimizes with respect to the structural design variables, the
minimum value of the performance index with respect to the control forces ob-
tained using the IMSC technique. The minimization process requires derivatives
of eigenvalues and eigenvectors with respect to the design variables. These
derivatives can be computed by a rather involved analytical procedure or a
relatively simple finite difference procedure. This paper examines the computer
cost effectiveness of these two procedures for the derivative calculations.

INTRODUCTION

One of the objectives of structural control is to suppress undesirable
motion resulting from some unavoidable excitation such as onboard machinery or
docking maneuvers. In active control the motion of structure is sensed and
suitable forces are applied to reduce and ultimately eliminate the undesirable
motion. In optimal control the forces are applied such that a preselected
performance index is minimized. The solution of the optimal control problem
requires the solution of the matrix Ricatti equation. Because of the difficul-
ties encountered in numerical computations, the solution of the matrix Ricatti
equation is not feasible for large order systems. For large order systems, an
alternate method known as the Independent Modal Space Control (IMSC) [1] is more
suitable.

In the IMSC method, the control forces are specified in the modal space
instead of in the physical space. Also by suitably choosing the modal control
forces, each mode of vibration is controlled independently of the other modes.
The performance index is assumed to be of the form

J = Jr (1)

2

r 1
where & is the number of modes controlled and J_ is the performance index
associated with the r-th mode and has the definition

t
f
- 2 2 2 2 2
Jp = J (wo B +wl no+Rozo )dt (2)
0
where
n =t/ w (3)
r r r 4
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w_ is the frequency of the rth mode and R_>0 is the penalty parameter imposed on
the control effort. A higher value of Rr will result in a smaller control force
in the modal space and vice versa.

The modal coordinates Eps T = 1,...2 are related to the displacement vector u,
by the relation

u = Xg (4)

where X is the modal matrix, having as its columns the eigenvectors, obtained by
the solution of the eigenvalue problem

KX = wl MX (5)

£, and e satisfy the constraint equations

S ra )=z () (6.2)
r rr cr
£, (0) = £, (6.b)
£.(0) = n (0) w, (6.c)
where Z =X'F (7)

c

is the modal control vector. Minimization of Jr in Eq. (2) with the differential
constraint equations given by Egs. (6) leads to a 2 x 2 matrix Ricatti equation
that can be solved analytically for tf B o,

For this case, the control force is given by [2]
_ - 2 -1.1/2
Zep(8) = w, (“r (mr * Ry ) ) Ep(t)

2 1z
|7 e (8)

-1
)Tt

2 -1
- [z o, (-wr + (mr . Rr)
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and the solution of the closed loop modal equations (6) for the controlled modes
gives

-alt
Er(t) = e (a1 cos 6t + 81 sin at) (9)
with
a; = A, W, (10)
8 = (wd)r (11)
ay = Ero (12)
w
. & (13)
By © CG;j: (Ero Ap Ny (0))
f
- 22
Ar‘ - Zwr (14)
_ 2 f 1/2
(wd) = (wr TN P ﬁ) (15)
, 3
- -1 _ -1
fa17 = R kyyp, f22 R"ka2 (16)
_ - 2 .2 1/2
k21 k12 w, R + ( w. Rr + Rr) (17)
N .2 02 2 .2 1/2 \1/2
k22 = (Rr ZwY‘ RY’ + Zwr RY‘ (wr RY‘ + R Y‘) ) (18)

Substitution of Egs. (9) through (18) into Eq. (2) followed by its integration
with tf = » yields

2
w
_ r
o= =5 (Bl * Flpy + 61y (19)
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with

2 2
P ¥ N P 7 S
1 2. i TR 2 n
r r r r wr' r
2 2 3/2 . .2 2 1/2
1 2 R R 2 R R
Kyq = { > + (¥ Ry 4 r) -2 Roup R, }
w r r
r
az = nr(o)
1
- fomwY-n(0) w A
82 (wd)r [Ero ( 21" ¢ ) nr( ) ©y r]
) 2 2
E=Jdyya) + Jyp oy a0
) 2 2
F=dyy By * Jpp By * Jpp By By

[
1]

2 dqp ag By ¥ 2055 oy By gy () Byt ap Bp)

1 1
I = +
11 4 a, 4a12+92
a
1 1
I = - +
22 2 2
4 ay + 9 4 a 1
0
= 1 )
12 3 al2 + e2

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(29)
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Simultaneous Design and Control

The process of simultaneous design and control of structures is a min - min
problem that minimizes with respect to the structural design variables the minimum
value of the performance index with respect to the control forces.

The minimum value of the performance index with respect to control forces is
given by Eq. (1) wherein J_ can be evaluated from Egs. (8) through (29). In the
process of minimization df this minimum value of the performance index, its
derivatives with respect to the design variables are required. These derivatives
can be evaluated explicitly by a Tlaborious, even though straightforward
differentiation of Egs. (8) through (29) with respect to the design variables
provided the derivatives of the eigenvalues w_ and the eigenvectors x_, r = 1,
2...% are available. The other alternative is'to calculate the derivatives of J
with respect to the design variables by using say the forward difference scheme.
The latter is easily programmable since no explicit derivatives of the eigenvalues
and eigenvectors with respect to the design variables are then required. The
thrust of this paper is a comparison of the computational cost and the efficiency
of the two procedures for calculating the derivatives of the performance index.

Before we elaborate on this comparison however, we will digress and discuss
the calculation of the derivatives of the eigenvalues and eigenvectors using the
well known Nelson's method [3].

Derivatives of Eigenvalues and Eigenvectors with Respect to the Design Variables

Purely from a computer programming point of view the simplest and the most
straightforward  though not necessarily the most efficient way to compute the
derivatives of eigenvalues and eigenvectors is by using finite differences in
particular the forward difference scheme with an appropriate step size [4]. The
main disadvantage of the forward difference scheme is that it requires the
solution of an eigenvalue problem once for each design variable. This could be a
computationally expensive process. Furthermore, to obtain an accurate value of
the computed derivatives, the eigenvalue problems need to be solved with a high
degree of precision.

The eigenvalue mz, and the eigenvector x_, of the previous section are obtained by
the solution of fhe eigenvalue problem.

r=1, 2...2 (30)

where M and K are the assembled mass and stiffness matrices respectively of the
finite -element model of the structure. The mode shape X is normalized with
respect to the mass matrix M as

X, Mx_ =38 (31)
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wherein § is the Kronecker delta. Differentiating Egs. &30) and (31) with
respect to "a design variable p. for a particular eigenpair (wr’xr) with distinct
eigenvalues one obtains J

dx,, duf dk 2 dM (32)
-y (2D - (D) wx - (-2 ),
( r ) .dpj dpj r dpj r dpj r
XT M .dx_r- = -1.‘-XT .q_M_x (33)
r dp. 2 "r \dp.)'r
J J
where use has been made of the symmetry of the mass matrix M.
T

To obtain the derivatives of eigenvalues, Eq. (32) is premultiplied by x

followed by the use of Eq. (31) to yield r

dw2
L T |2 dm, (34)
dpj r dpj Or dpj r

To obtain the derivatives of the eigenvector X Egs. (32) and (33) are com-
bined as i

(dL -2 ﬂ)x
K - “E M - M X, dxr/dpj - dpj r dpj r
= 1.7
- 2 -5 X, (dM_ (35)
X, M 0 dwr/dpj 2 7r (dpj)xr

Equations (35) could be solved for both the ei%envalue and the eigenvector
derivatives except that the principal minor K - w7 is singular. To circumvent
this apparent difficulty, Nelson [5] proposed a method that temporarily imposes
the normalization equation (31) by the requirement that the largest component of
the eigenvector be equal to one. If the re-normalized eigenvector is denoted by
X, and it is assumed that its largest component is the m-th one, then Eqg. (31) is
rgplaced by
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and Eq. (33) is replaced by

dxrm =0 (37)
dpj
For ;r Eq. (32) reduces to
( 2 (d;(r) (d(%r') - dK 2 dM - (38)
K - W, M ) —HEE = —HE; M Xp = ( a;; T W, a;; ) X,

Equation (37) is now used to reduce the ordfr of Egs. (38) by deleting the m-th
row and m-th column. When the eigenvalue w_ is distinct, the reduced system is
not singular and can be solved by a standard technique for the derivative vector
dx _/dp.. The required vectors x_ and dx_/dp. are then obtained from X, and

di:/dpg by the following easily vefified refatiohs

- v =T, - \1/2
Xo = X, ( X. M xr) (39)
and dx dx
(-—dp"\ A R
dx j Pj h|
dp. (=T = Y1/2 - Y3/2
J (xr M X, 2 (7 X, M xr)

In finite element computer codes that exploit the sparsity structure of the K
and M matrices, it may be inconvenient to obtain the re-normalized vector, x_ by
setting the largest component to unity. Such a scheme necessitates the recalchila-
tion of the sparsity structure. Instead, it is more convenient to obtain the
re-normalized eigenvector, X by setting

Xpp = 1 (41)

where n is the order of the matrices K and M.

As mentioned previously, the derivative of the eigenvector x_ with respect to
the design variable pj can also be calculated by the forward différence scheme

dx (Xr)pj.g.h- (XY‘)pJ

dp h

(42)
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where (x_ ) is the eigenvector calculated at p.,,. In order to assess the
r pj+h j+h

accuracy of the forward difference scheme relative to Nelson's analytical method,

an error measure is defined as

e(h)=? ; 21: (‘”‘_ri)A ("_"r.i)F 2 (43)

ap; JA op, JF
cal and the foﬁhard d1ffereﬂce scheme respectively. The error e is summed over
all the components of the eigenvector, over the mode shapes controlled and over
all the design variables.

where 4\ and (axri are the eigenvector derivatives by the analyti-

Application to a Stiffened Composite Plate

A laminated composite square plate reinforced by two stiffeners placed
symmetrically with respect to the laminate midplane along the two centerlines of
the plate is considered. As in reference [6] the plate is discretized using a
mesh of 8 noded isoparametric, shear deformable plate bending elements. Assuming
the plate is simply-supported along all its four edges, the resultingfinite-
element model has a respectable (from control engineer's point of view) 127
degrees of freedom and thirteen design variables consisting of five discrete fiber
orjentations and eight continuous stiffener cross-sectional areas.

Table 1 provides an assessment of the error € as a function of the step size h
for the finite difference derivative calculations. As expected, the error
decreases with a decrease in h and then begins to increase as a result of machine
roundoff.

A comparison was made of the computational cost for the calculation of the
eigenvector derivatives using Nelson's method and the finite difference scheme.
Using Nelson's method to compute the gradient of the three eigenvectors with
respect to the thirteen design variables the required CPU time was 17.2 seconds.
To compute the eigenvector gradients using forward differences several eigenvalue
problems need to be solved. Using subspace iteration in conjunction with the
Jacobi method [7] for the solution of the eigenvalue problem, the total time for
the required gradient calculations was 39.5 seconds. Note that the design vector
has thirteen variables, and it was necessary to solve the perturbed eigenvalue
problem thirteen times. Since the solution of the unperturbed eigenvalue problem
provides an excellent guess for the eigenvalue of the perturbed system, an inverse
jteration scheme [7] in conjunction with shifting of the stiffness matrix K can be
used to accelerate the solution process. Using such a strategy, the CPU time
required for the calculation of the eigenvector gradients using forward
differences was down to 27.6 seconds.
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Thus, in relation to the analytical method the computational cost of the finite
difference calculation of the eigenvector gradients is not at all prohibitive. On
the other hand, in spite of this modestly higher computational cost, the
simplicity of the calculation of the eigenvector gradients using forward
difference scheme is overwhelming. However some caution must be exercised when
using inverse iteration in conjunction with shi{ting of the stiffness matrix. It
should be noted that the normalization scheme Xy M x =1 fixes only the magnitude
of the eigenvector and if x_ is an eigenvector, then -x_ is also an eigenvector of
the system. Hence, when eiSenvectors of the perturbed gystem are computed, care
must be taken to choose the eigenvector (Xr) such that

p.th

J

T
(x.) (x.)
r r >0
.+h )
Pj P

This can be done very easily in practice by simply calculating the above dot
product and changing the sign of the vector Xp if the dot product is negative.

Table 1. Error € as a Function of the Step Size h

h £
0.156 x 107! 0.79 x 1078
0.781 x 1072 0.21 x 1076
0.390 x 1072 0.54 x 107/
0 195 x 1072 0.13 x 107/
0.976 x 107> 0.34 x 1078
0.488 x 1073 0.98 x 107°
0.244 x 1073 0.80 x 1072
0.122 x 1073 0.25 x 1078
0.610 x 107 0.101 x 1077
0.305 x 107% 0.404 x 107/
0.152 x 107% 0.162 x 107°
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Table 2 provides a comparison of the computational effectiveness of the two
approaches for the control of the stiffened laminated composite plate problem for
cases involving different number of design variables and different number of fre-
quencies being controlled.

Table 2. Finite Difference Versus Nelson' Approach - Normalized CPU Time

Type of Finite Difference
Design Approach Nelson's Approach
13 design
variable, 1.598 1.0
3 frequencies
13 design
variables, 1.939 1.0
8 frequencies
5 design
variables, 1.700 1.0

8 frequencies

It is clear from Table 2 that in all the cases considered the finite
difference approach requires more CPU time as compared to the Nelson's Analytic
approach. The percentage increase in CPU time increases with the number of
frequencies considered. In the finite difference approach an eigenvalue problem
needs to be solved for each design variable considered. If shifting the K matrix
in conjunction  with inverse iteration is used to calculate the
eigenvalues/eigenvectors, the finite difference approach is quite competitive with
the Nelson's analytic approach. Even though the approach may require about twice
the time of Nelson's method, the coding effort is fagKlessMin the case of the fi-

nite difference approach. Secondly, calculation of 3p ’ 3p (derivatives of stiff-
ness and mass matrices respectively) required in the case of Nelson's approach
can be quite difficult in some cases,, In_the case where the design variables are

element frame areas, calculation of ap ° %%.is fairly straightforward. However,

if p, corresponds to the number of plies with a given orientation then the calcu-
lation of %%3 %%. is fairly involved.

In conclusion, it needs to be emphasized that the finite difference scheme
for the calculation of the eigenvalue and eigenvector derivatives does not appear
to be costly enough to warrant the use of the analytical method. With the former
scheme one does not have to "tinker" with the "black box" that generates the
eigenvalues and eigenvectors for a given design variable vector. The analytical
method on the other hand needs an intimate knowledge of this "black box".
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